На правах рукописи

Паршина Анастасия Анатольевна

ПАТОГЕНЕТИЧЕСКАЯ РОЛЬ НЕТОЗА В КОАГУЛЯЦИИ ПЛАЗМЫ И ФИБРИНОЛИЗЕ ПРИ РАКЕ ТОЛСТОГО КИШЕЧНИКА (ЭКСПЕРИМЕНТАЛЬНО-КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ)

14.03.03 - патологическая физиология

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата медицинских наук Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Читинская государственная медицинская академия» Министерства здравоохранения Российской Федерации

Научный руководитель:

доктор медицинских наук, профессор Цыбиков НамжилНанзатович

Официальные оппоненты:

Шолохов Леонид Федорович –доктор медицинских наук, профессор.

Федеральное государственное бюджетное научное учреждение «Научный центр проблем здоровья семьи и репродукции человека» Министерства науки и высшего образования, руководитель лаборатории физиологии и патологии эндокринной системы, г. Иркутск

Савченко Андрей Анатольевич – доктор медицинских наук, профессор.

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук», обособленное подразделение «Научно-исследовательский институт медицинских проблем Севера» Министерства науки и высшего образования Российской Федерации, заведующийлабораторией клеточно-молекулярнойфизиологии и патологии, г. Красноярск

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «Дальневосточный государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Хабаровск

Защита диссертации состоится «12» мая 2021 года в 10:00 на заседаниидиссертационного совета Д 208.118.02 при ФГБОУ ВО «Читинскаягосударственная медицинская академия» Министерства здравоохраненияРоссийской Федерации (672000, г. Чита, ул. Горького, 39а).

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Читинскаягосударственная медицинская академия» Министерства здравоохраненияРоссийской Федерации и на сайте http://chitgma.ru

Автореферат разо	ослан «	»	_2021 г.
Ученый секретар	Ь		
диссертационног	о совета	Д 208.118.02	
Д.М.Н.,	доцент	Mujouaseote]

Мироманова Наталья Анатольевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень её разработанности

Нейтрофильные гранулоциты (НГ) считались клетками с известным строением и функциями, до момента открытия нового явления – нетоза (от англ. NETosis, NETs – neutrophil extracellular traps), или гибели НГ с формированием нейтрофильных внеклеточных ловушек (НВЛ) [Brinkmann V. et al., 2004]. Данное явление не является уникальным и специфичным для узкой группы патологических процессов; его признаки встречаются при разнородных заболеваниях, в связи с тем, что НГ как представители врожденного иммунитета являются участниками всех воспалительных процессов независимо от этиологии и локализации [Hasler P. et al., 2016]. Известно, что лейкоциты участвуют в реакциях гемостаза и, закономерно, компоненты НВЛ обнаруживаются в составе тромбов, в пораженной атеросклерозом сосудистой стенке. воспаление и гиперкоагуляция связаны единой биологической целесообразностью локализация и предотвращение диссеминации потенциального патогена, обнаружение НВЛ составе тромбов удивительно. Морфологические исследования выявили взаимодействие внеклеточной ДНК (вкДНК) и гистоновых белков с прочими участниками тромбообразования – тромбоцитами, эритроцитами, микровезикулами, факторами свёртывания крови (ФСК) [Engelmann B., 2015]. На фоне поиска признаков нетоза при патологии, сопровождающейся гиперкоагуляцией (например, при атеросклерозе, тромбозе глубоких вен и т.п.) недостаточно освещенными остались вопросы влияния НВЛ на систему фибринолиза, что, учитывая, практически одновременную активацию коагуляции и фибринолиза, вероятно, имеет клинические последствия. Ряд работ описывает прокоагулянтный эффект, основанный на протеолитической модификации и как следствие инактивации специфических ингибиторов факторов свертывания [Miralda I. et al., 2017; Decker A.-S. et al., 2018], однако, не дают информации о возможности протеолиза самих ФСК, а также о возможности избирательного накопления в НВЛ корпускулярных и молекулярных участников гемостаза, учитывая морфологические особенности данной структуры. Интересным представляется изучение процесса нетоза при наличии злокачественных новообразований, которые с одной стороны ассоциированы с состоянием хронической гиперкоагуляции, с другой – являются примером измененной иммунной реактивности [Sanz-Moreno V. et al., 2018; Kwaan H. et al., 2019]. Разнообразие ситуаций, в которых потенциально возможно участие НВЛ, оправдывает и большую вариативность моделей его исследования.

Цель исследования: установить патогенетическую роль литического нетоза в процессах свертывания плазмы крови и фибринолиза в норме и при состоянии хронической гиперкоагуляции у лиц с раком толстого кишечника.

Задачи исследования:

- 1. Установить отличия в формировании нейтрофильных внеклеточных ловушек у доноров и пациентов со злокачественными новообразованиями толстого кишечника на основании плазменного уровня внеклеточной ДНК.
- 2. Выявить патогенетическую роль нейтрофильных внеклеточных ловушек в процессах коагуляции плазмы и последующего фибринолиза у доноров и пациентов со злокачественными новообразованиями толстого кишечника.
- 3. Исследовать влияние нетоза на плазменный уровень тканевого фактора, микровезикул CD142+, фибриногена, протромбина, IX и XIII факторов свертывания крови, антитромбина-III в норме и у пациентов со злокачественными новообразованиями толстого кишечника.
- 4. Изучить влияние нетоза на уровень плазминогена/плазмина, tPA, PAI-1 в плазме крови доноров и лиц со злокачественными новообразованиями толстого кишечника.
- 5. Установить влияние литического нетоза в *in vitro* модели на уровень ИЛ-6, ИЛ-8, P-селектина, PSGL-1 в норме и у пациентов со злокачественными новообразованиями толстого кишечника.

Научная новизна

Впервые установлено, что индукция нетоза с помощью форбол-12-миристат-13ацетата слабее у лиц, имеющих злокачественные новообразования толстого кишечника, в сравнении со здоровыми донорами.

Впервые показано, что формирование нейтрофильных внеклеточных ловушек в аутоплазме сопровождается задержкой начального этапа коагуляции.

Впервые выявлено, что формирование нейтрофильных внеклеточных ловушек в плазме крови сопровождается интенсификацией фибринолиза.

Впервые доказано, что формирование нейтрофильных внеклеточных ловушек у здоровых доноров ассоциировано с увеличением концентрации плазминогена/плазмина, ИЛ-8, PSGL-1 и уменьшении уровня PAI-1.

Теоретическая и практическая значимость работы

В работе выявлена роль нетогенеза в реализации механизмов свертывания крови и фибринолиза в норме и патологии на примере злокачественных новообразований толстого

кишечника. Установлены функциональные и количественные показатели, характеризующие процессы фибринообразования и фибринолиза, что позволяет выявить те их компоненты и/или этапы, которые наиболее чувствительны к влиянию нетоза. Полученные результаты позволяют прогнозировать характер и динамику расстройств гемостаза при развитии патологического процесса.

Методология и методы исследования. Исследование представляет собой экспериментальную работу, выполненную *in vitro* на модели нетоза в аутоплазме.

Основные положения, выносимые на защиту:

- 1. Индуцированная форбол-12-миристат-13-ацетатом генерация нейтрофильных внеклеточных ловушек у больных злокачественными новообразованиями толстого кишечника выражена слабее, чем у доноров.
- 2. Гибель нейтрофильных гранулоцитов путем литического нетоза, вызванного форбол-12-миристат-13-ацетатом, сопровождается ускорением начального этапа свертывания крови у лиц со злокачественными новообразованиями толстого кишечника и усилением фибринолиза у доноров.
- 3. Формирование нейтрофильных внеклеточных ловушек ведет к локальному увеличению концентрации ИЛ-8 и PSGL-1, снижению ИЛ-6 у доноров, и не влияет на их уровень у больных раком толстого кишечника.

Степень достоверности и апробация диссертации

Достоверность полученных данных подтверждена воспроизводимостью результатов на предварительном и основном этапах исследования и при проверке соответствующими статистически методами. Исследование одобрено на заседании локального этического комитета при ФГБОУ ВО ЧГМА (протокол №86 от 01.11.2017 г.).

Результаты исследования доложены на XVII, XVIII, XIX межрегиональной научнопрактической конференции студентов и молодых ученых «Медицина завтрашнего дня» (Чита, 2018-2020); Международной научно-практической конференции, посвященной 65летию образования Читинской государственной медицинской академии «Актуальные проблемы клинической и экспериментальной медицины» (Чита, 2018).

Внедрение в практику

Результаты диссертационной работы внедрены в учебный процесс на кафедре патологической физиологии ФГБОУ ВО «Читинская государственная медицинская академия».

Публикации

По теме диссертации опубликовано 7 печатных работ, в том числе 3 статьи в журналах, входящих в перечень рецензируемых научных журналов и изданий,

рекомендованных ВАК Минобрнауки России; 4 тезиса в сборниках российских и краевых научных конференций.

Структура и объем диссертации

Диссертация изложена на 113 страницах машинописного текста и состоит из введения, четырех глав (обзор литературы, материалы и методы исследования, результаты собственных исследований, обсуждение результатов), заключения, выводов, списка использованной литературы. Работа иллюстрирована 18 таблицами и 9 рисунками. Список цитируемой литературы содержит 178 источников, из них 27 отечественных и 151 зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Исследование проведено в два этапа — предварительный и основной в группах пациентов («Z») и группе контроля («К»). Группу пациентов («Z») составили 37 больных с раком толстого кишечника St II-III (19 мужчин, 18 женщин, средний возраст 67 лет); группу «К» составили добровольцы, сопоставимые по полу и возрасту без злокачественного процесса — 45 человек (23 мужчины и 22 женщины, средний возраст 68 лет). Все участники дали письменное добровольное информированное согласие. Для работы использовали венозную кровь с антикоагулянтом — 3,2% раствором цитрата натрия.

Критерии исключения: прием антикоагулянтов, антиагрегантов, гирудотерапия, химиотерапия, гормонотерапия, заболевания системы гемостаза, перенесенные в течение последних 6 месяцев тяжелые воспалительные и инфекционные заболевания, обострения ишемической болезни сердца, травмы, ожоги, операции, кровопотеря, переливание препаратов крови, гемобластозы и прочие онкологические заболевания в анамнезе, сахарный диабет.

Включение контрольных лиц в исследование производилось на основании данных анкетирования, амбулаторной медицинской документации, содержащей сведения о флюорографическом обследовании и отсутствии данных о злокачественном процессе. Каждому участнику исследования выполняли термометрию и общий анализ крови. Донора исключали из исследования при: t°тела>37°C, гемоглобин (HGB)<120 г/л, эритроциты (RBC)<4,0×10¹²/л, лейкоциты (WBC)>9×10⁹/л, СОЭ>10 мм/час. Включение пациентов в исследование производилось на основании данных истории болезни.

Предварительный этап

Целью предварительного этапа явилось выявления факта влияния нетоза на фибринообразовние и фибринолиз, содержание нейтрофильной эластазы (НЭ) и тканевого фактора (ТФ) в бедной тромбоцитами аутоплазмы (БТаП) в группе онкобольных и контрольных лиц.

Исследование особенностей фибринообразования

Изоляция нейтрофилов

- 1. Цельную кровь центрифугировали 35 минут на двойном градиенте плотности фиколлаурографина (1,077/1,093).
- 2. Гранулоциты переносили в отдельную пробирку, отмывали раствором фосфатного буфера (ФБР), осаждали центрифугированием. Супернатант отбирали и заменяли на 4 мл среды RPMI1640.
- 3. Количество клеток считали и доводили до $4,5-6\cdot10^6/\text{мл}$, при жизнеспособности не менее 98%.

Подготовка экспериментальных моделей

- 1. Бедную тромбоцитами аутоплазму (БТаП) получали путем центрифугирования цельной крови.
- 2. По 1 мл суспензии НГ помещали в отдельные пробирки, центрифугировали. Супернатант удаляли.
- 3. В одну пробирку вносили 5 мкл 0,9%NaCl и 500 мкл БТаП, получали суспензию интактных НГ (иНГ) в аутоплазме. Во вторую пробирку вносили 5 мкл (100 нмоль) индуктора нетоза форбол-12-миристат-13-ацетата (ФМА), затем 500 мкл БТаП, получали суспензию активированных НГ (аНГ) в аутоплазме.
- 4. Как контроль использовали БТа Π без клеток: образец свежей БТа Π с 5 мкл 0,9%NaCl «control NaCl» и образец БТа Π с 5 мкл Φ MA «control act».
- 5. Опытные и контрольные образцы инкубировали при 37°C 240 минут, центрифугировали. Плазму каждого образца переносили в отдельные пробирки для дальнейшего анализа.

Тест лизиса фибриновых пластин

- 1. Фибриновые пластины (ФП) готовили из 2 мл 13% водного раствора фибриногена и 20 мкл раствора тромбина (Helena, Великобритания). Растворы смешивали, оставляли на ровной поверхности до образования фибринового геля.
- 2. Половину чашек с $\Phi\Pi$ прогревали 60 минут при 90°С. Каждую $\Phi\Pi$ маркировали как прогретую $\Pi\Phi\Pi$ или непрогретую $\Pi\Phi\Pi$.
- 3. Каждую ФП делили на 2 половины. На одну половину, наносили 15 мкл раствора ингибитора протеаз апротинина (3-7 TIU/mg, Sigma Aldrich, Германия), на другую 15 мкл 0,9%NaCl.

Создание экспериментальных моделей

- 1. Готовили суспензию иНГ и аНГ в среде RPMI1640 согласно вышеприведенной схеме.
- 2. В соответствующие области ФП помещали отдельно по 50 мкл суспензии иНГ и аНГ.
- 3. Чашки с $\Phi\Pi$ закрывали крышкой, инкубировали 20 часов при 37°С. Площадь зон лизиса $\Phi\Pi$ измеряли в мм².

Концентрация тканевого фактора и нейтрофильной эластазы

Использовали 100 мкл плазмы каждого образца после инкубации. Применяли метод ИФА (ELISA Tissue factor, ELISA Neutrophil elastase; Cloud Clone Corp., США).

Основной этап

Использовали три образца БТаП:

- 1. PPP контрольный образец исходной $БТа\Pi 1$ мл.
- 2. INT образец $БТа\Pi$ после инкубации в ней интактных $H\Gamma$ 1 мл.
- 3. РМА образец БТа Π после инкубации в ней, активированных Н Γ 1 мл.

Микроскопия

В чашки для клеточных культур, покрытые Poly-L-lysin (Sigma Aldrich, Германия), вносили по 1 мл суспензии НГ в среде RPMI1640. В одну чашку добавляли 5 мкл ФМА (100 нмоль), в другую – 5 мкл 0,9%NaCl, инкубировали 4 часа при 37°C, адгезированные клетки отмывали раствором ФБР, вносили 10 мкл красителя Sytox Green (Beckman Coulter, США) в 500 мкл ФБР, через 15 минут отмывали раствором ФБР, визуализировали НВЛ с использованием микроскопа Zoe Fluorescent Cell Imager (BioRad, США).

Уровнь вкДНК

Использовали 100 мкл плазмы каждого образца после инкубации. Применяли метод ИФА (Cell Death Detection ELISA^{plus}, Roche, Германия).

Исследование тромбодинамики

После инкубации и центрифугирования отбирали 120 мкл плазмы каждого образца и выполняли тест тромбодинамики на аппарате «Регистратор тромбодинамики Т2» (НетаСог, Россия). Оценка динамики роста и лизиса фибринового сгустка осуществлялась по параметрам: начальная (Vi) и стационарная (Vst) скорости роста сгустка, размер (СS), плотность (D), время задержки роста (Tlag), время появления спонтанных сгустков (Тsp), время начала лизиса (LOT), динамика лизиса (LP) и время необходимое для полного лизиса (LTE).

Измерение концентрации плазменных компонентов систем коагуляции и фибринолиза, цитокинов, молекул адгезии

Использовали 50 мкл плазмы каждого образца после инкубации. Измерение выполняли методом проточной цитометрии с использованием наборов для

мультиплексного анализа Human Thrombosis Panel (BioLegend, CIIIA) и Human Fibrinolysis Panel (BioLegend, CIIIA) на проточном цитометре CytoFlex (Beckman Coulter, CIIIA). Измеряли содержание: тканевой фактор (ТФ), ІХ фактор свертывания крови (ІХ), ХІІІ фактор свертывания крови (ХІІІ), протромбин (РТ), фибриноген (Fib), плазминоген/плазмин (PLS), тканевой активатор плазминогена (tPA), ингибитор активатора плазминогена 1 типа (PAI-1), D-димер (DD), Р-селектин (PS), PSGL-1, ИЛ-6, ИЛ-8, антитромбин-ІІІ (АТ-ІІІ).

Измерение уровня микровезикул, несущих тканевой фактор MP-CD142+

Образец плазмы объемом 650 мкл, использовали для измерения количества микровезикул, несущих тканевой фактор — MP-CD142+. Центрифугировали 45 мин на скорости 22000 об/мин при 4°C (Sigma, 12110-H, США). Отбирали 90% плазмы, к осадку добавляли 150 мкл ФБР, перемешивали, 50 мкл отбирали в отдельные пробирки, вносили антитела анти-CD142 и анти-CD16. Измеряли методом проточной цитометрии на аппарате Cytomics FC-500 (Beckman Coulter, США).

Статическая обработка

Использовали пакет программ STATISTICA 10.0 (StatSoft Inc., США). Данные представлены как медиана и 25 и 75 процентили — Me[Q0,25; Q0,75]. Для сравнения результатов внутри групп использовали тест Уилкоксона, между группами контроля и пациентов — U-тест Манна-Уитни, t-тест Стьюдента и χ^2 Пирсона, значимыми считали отличия при $p \le 0.05$.

РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ

1. Результаты предварительного этапа исследования в группе контроля

1.1. Исследование тромбодинамики. Выявлено замедление роста фибринового сгустка в образцах, инкубированных в присутствии клеток. Начальная скорость роста (Vi), снижалась в плазме с иНГ и аНГ относительно контролей («control NaCl» и «control act») (табл. 1). Замедление роста сгустка происходило за счет снижения скорости распространения роста (Vst), значимое отличие по Vst зарегистрировано для образца с аНГ.

Таблица 1 Показатели тромбодинамики в группе контроля Me[Q0,25-Q0,75]

	control NaCl	control	иНГ	аПЕ	p			
	control NaCl	act	ипі	аНГ	p1	p2	р3	p4
1	2	3	4	5	6	7	8	9

Таблица 1. Продолжение

1	2	3	4	5	6	7	8	9
Vi мкм/мин	56,9 [53,4; 58,7]	57,3 [53,8; 59,2]	53,6 [52,1; 56,1]	52,7 [51,1; 56,5]	<u>0,003</u>	0,12	<u>0,0006</u>	<u>0,01</u>
Vst мкм/мин	32,8 [31,2; 36,1]	32,8 [31; 35,4]	31,6 [30; 34,6]	29,7 [29,2; 32,6]	0,25	0,97	<u>0,004</u>	0,25
CS MM ²	1294 [1184; 1399]	1299 [1120; 1348]	1226 [1150; 1400]	1188 [1110; 1218]	<u>0,01</u>	0,3	0,0006	0,002
D усл. ед.	18720 [17261; 19888]	18711 [17215; 19856]	18009 [16781; 19522]	18692 [17232; 19540]	0,9	0,07	0,8	0,8
Tlag мин	1 [0,9; 1]	1 [0,9; 1]	0,8 [0,8; 1]	0,9 [0,8;1]	<u>0,005</u>	0,6	0,07	0,005

p1 сравнение control NaCl/int; **p2** сравнение control NaCl/ control act; **p3** сравнение control act/aH Γ ; **p4** сравнение иH Γ /aH Γ ; **p** значимые отличия ($p \le 0.05$)

CS уменьшился в плазме с аНГ. Tlag значимо изменялся только в образце плазмы с иНГ. Спонтанных сгустков не зарегистрировано.

1.2. Количество тканевого фактора и нейтрофильной эластазы. При инкубации с аНГ, зафиксировано снижение содержания ТФ, с иНГ – повышение. Значимое снижение концентрации НЭ получено в образце иНГ относительно контроля (control NaCl) (табл. 2).

	control	control	иНГ	аНГ			p	
	NaCl	act	ИПП	alli	p1	p2	р3	p4
ТФ пг/мл	4,86 [4,4; 4,7]	4,85 [4,4; 4,9]	4,93 [4,3; 5,11]	4,38 [4,1; 4,9]	<u>0,005</u>	0,3	<u>0,01</u>	0,25
НЭ нг/мл	5,85 [5,23; 5,9]	5,84 [5,19; 5,9]	3,93 [3,5; 4,74]	4,39 [3,9; 4,85]	<u>0,03</u>	0,9	0,3	<u>0,01</u>

p1 сравнение control NaCl/int; **p2** сравнение control NaCl/ control act; **p3** сравнение control act/aHГ; **p4** сравнение иНГ/aHГ; $\underline{p} \le 0.05$ значимые отличия

1.3. Фибринолитическая активность. Нанесение суспензии клеток на поверхность ФП приводит к формированию зоны лизиса. Площади зон больше на непрогретых ФП, чем на прогретых ФП. Максимальная зона зафиксирована в месте нанесения аНГ на нФП (табл. 3).

Таблица 3 Площадь зон лизиса фибриновых пластин в группе контроля Me[Q0,25-Q0,75]

Фибриновые пластины	Обр	Образцы				
1	иНГ	аНГ	иНГ/аНГ			
$\mathbf{H}\mathbf{\Phi}\mathbf{\Pi}\ \mathrm{MM}^2$	15,1 [9; 19]	31,1 [26; 35]	<u>p<0,001</u>			
$\mathbf{\Pi}\mathbf{\Phi}\mathbf{\Pi}\ {}_{\mathbf{M}\mathbf{M}^{2}}$	4,9 [3; 8]	11,2 [9; 14]	<u>p<0,001</u>			
н $\Phi\Pi$ +апротинин ${ m mm}^2$	0	0	-			
$\mathbf{\Pi} \mathbf{\Phi} \mathbf{\Pi} + \mathbf{a} \mathbf{\Pi} \mathbf{p} \mathbf{o} \mathbf{T} \mathbf{u} \mathbf{h} \mathbf{u} \mathbf{h} \mathbf{m} \mathbf{m}^2$	0	0	-			

Р сравнение внутри группы контроля; <u>р</u> значимые отличия ($\underline{P} \le 0.05$)

2. Результаты предварительного этапа в группе пациентов

2.1. Исследование тромбодинамики. Формирование фибринового сгустка в группе пациентов соответствует состоянию гиперкоагуляции. Vi больше, чем в группе контроля (табл. 4). Vst ниже, чем в группе контроля, но аНГ не повлияли на данный параметр. СS у пациентов больше, чем в контроле, однако значимого изменения размера внутри группы не зафиксировано. Значения D превышают таковые в контроле и значимо изменяются в образцах с аНГ (27165 усл. ед., p<0,05). Изменения Tlag не выявлено. Происходило формирование спонтанных сгустков. В образцах, инкубированных с иНГ, спонтанные сгустки (Тsp) возникают раньше, чем в контрольных (17,3 и 26,1 мин. соответственно) (табл. 4).

Таблица 4 Показатели тромбодинамики в группе пациентов Me[Q0,25-Q0,75]

	control	control oct	wUT	аНГ			p	
	NaCl	control act	иНГ	апі	p1	p2	р3	p4
1	2	3	4	5	6	7	8	9
Vi мкм/ мин	62,3 [61,1;63,5]	61,7 [60,8; 63,5]	58,4 [56,6; 59,6]	61,8 [61,2; 63,4]	0,007	0,2	0,18	<u>0,05</u>
Vst MKM/ MUH	30,1 [29,6; 32,1]	30,6 [29,5; 32,6]	30,3 [28; 31,7]	30,4 [29,7; 31,4] <u>0,02</u>		0,7	0,6	0,8
CS MM ²	1311 [1260; 1374]	1309,5 [1235; 1387]	1287,5 [1211; 1364,5]	1333 [1310; 1345]	0,26	0,8	0,09	<u>0,001</u>

Таблица 4. Продолжение

1	2	3	4	5	6	7	8	9
D усл. ед.	27603,5 [25369; 30120]	27762 [26123; 29541]	28782 [26250; 30473]	27165 [25821; 28340]	0,01 1 0,6 0,4		<u>0,001</u>	0,7
Tlag мин	1 [0,9; 1]	1 [0,9; 1]	1 [0,9; 1]	1 [0,8; 1]	0,6	0,4	0,2	<u>0,03</u>
Тsp мин	26,1 [24,4; 28]	22,3 [21,2; 23,8]	17,3 [16,5; 19,8]	19,9 [17,7; 21,4]	<u>0,03</u>	0,06	0,05	0,07

p1 сравнение control NaCl/иНГ; **p2** сравнение control NaCl/ control act; **p3** сравнение control act/аНГ; **p4** сравнение иНГ/аНГ; отличия значимы при $\underline{p} \leq 0.05$

2.2. Количество тканевого фактора и нейтрофильной эластазы. Количество ТФ в плазме онкобольных превышает таковое у доноров. Инкубация плазмы в присутствии клеток приводит к увеличению содержания ТФ, с максимальным уровнем в образцах с иНГ. Колебание уровня НЭ незначимо (табл. 5).

Таблица 5 Количество тканевого фактора и нейтрофильной эластазы в группе пациентов Me[Q0,25-Q0,75]

	control	control act		аНГ	p			
	NaCl	control act	иНГ	alli	p1	p2	р3	p4
ТФ пг/мл	9,59 [8,7; 9,7]	9,57 [9,4; 9,7]	15,53 [12,1; 16,8]	11,84 [9,12; 13,2]	0,06	0,8	0,06	0,9
НЭ нг/мл	5,8 [5,51; 5,9]	5,49 [5,3; 5,6]	6,54 [6,2; 6,67]	6,07 [5,82; 6,4]	0,18	0,2	0,65	0,63

p1 сравнение control NaCl/иНГ; **p2** сравнение control NaCl/ control act; **p3** сравнение control act/аНГ; **p4** сравнение иНГ/аНГ отличия значимы при $p \le 0.05$

2.3. Фибринолитическая активность. Нанесение иНГ и аНГ на поверхность фибриновых пластин приводит к формированию зон лизиса большей площади, чем в группе контроля. Разница в площади зон между иНГ и аНГ меньше, чем у доноров. Присутствие апротинина ингибирует фибринолиз (табл. 6).

Таблица 6 Площадь зон лизиса фибриновых пластин в группе пациентов Me[Q0,25-Q0,75]

Фибриновые пластины	Обр	Образцы			
	иНГ	аНГ	иНГ/аНГ		
1	2	3	4		

Таблица 6. Продолжение

1	2	3	4
нФП мм ²	19,35 [17; 21]	36,8 [33; 38]	<u>p<0,001</u>
$\mathbf{\Pi}\mathbf{\Phi}\mathbf{\Pi}\ \mathrm{MM}^2$	8,6 [6; 12]	17,7 [16; 18]	<u>p<0,001</u>
нФП+апротинин ${ m MM}^2$	0	0	-
пФП+апротинин ${ m MM}^2$	0	0	-

нФП площадь зон лизиса непрогретых фибриновых пластин; **пФП** площадь зон лизиса прогретых фибриновых пластин; **иНГ** образцы с интактными клетками; **аНГ** образцы с активированными клетками; **р** сравнение внутри группы; отличия значимы при P < 0.05

3. Результаты основного этапа исследования

3.1. Уровень вкДНК. Содержание вкДНК в исходной плазме выше в группе контроля (К.РРР) (табл. 7). Нарастание концентрации вкДНК отмечалось внутри групп в образцах плазмы К.INT и Z.INT., с максимальным значением в К.РМА и Z.РМА. Рост концентрации вкДНК внутри группы контроля выше, чем внутри группы пациентов.

Таблица 7 Содержание вкДНК Me[Q0,25-Q0,75]

		К. Группа контроля				Z. Группа пациентов			
		Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^1	P ^{KZ}	Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^2	
	PPP	0,111 [0,1; 0,109]			<u>0,02</u>	0,1 [0,1; 0,101]			
вкДНК	INT	0,381 [0,22; 0,48]	0,007	0,008	0.000	<u>0,1</u>	0,26 [0,18; 0,33]	<u>0,0003</u>	0,05
	PMA	0,499 [0,4; 0,6]	0,008		<u>0,02</u>	0,3 [0,24; 0,41]	<u>0,0003</u>	0,03	

 ${f P}^{int}$ сравнение INT с PPP внутри групп (по Уилкоксону); ${f P}^{pma}$ сравнение PMA с PPP внутри групп (по Уилкоксону); ${f P}^{kz}$ сравнение между группами контроля и пациентов (по Манна-Уитни); ${f P}^1$ сравнение между INT и PMA внутри группы контроля (по Уилкоксону); ${f P}^2$ сравнение между INT и PMA внутри группы пациентов (по Уилкоксону). ${f P}$ значимые отличия (${\it p} \le 0.05$)

3.2. Визуализация нейтрофильных внеклеточных ловушек

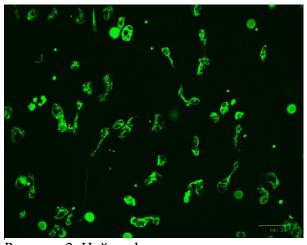


Рисунок 2. Нейтрофильные внеклеточные ловушки в группе контроля

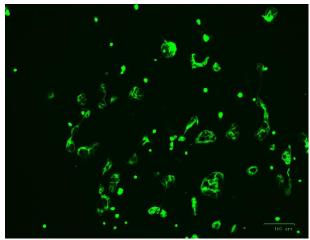


Рисунок 1. Нейтрофильные внеклеточные ловушки в группе пациентов

Рисунки 1 и 2 демонстрируют остатки НГ, погибших путем нетоза — неправильной формы обширные, сетеподобные структуры. Клетки, погибшие некрозом, напоминают точки правильной, округлой формы.

3.3. Показатели тромбодинамки. В тесте тромбодинамики выявлены значимые отличия между группами (табл. 8, 9).

Таблица 8 Показатели фибринообразования по данным теста тромбодинамики Me[Q0,25-Q0,75]

		К. Группа конт	гроля			Z. Группа п	ациентов	3
		Значение показателя	Pint Ppma	P ¹	PKZ	Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^2
1	2	3	4	5	6	7	8	9
	PPP	60,1 [55,5;61]			<u>0,0001</u>	67,7 [65;71,4]		•
Vi мкм/мин	INT	57,6 [54,3;60,6]	0,3	0,05	<u>0,0008</u>	63,9 [61,3;67,9]	<u>0,04</u>	0,08
	PMA	56,8 [52,2;58,8]	0,05		<u>0,006</u>	62,7 [60,3;66,6]	0,02	0,08
Vst мкм/мин	PPP	31,98 [31,6;33,5]			<u>0,0001</u>	49,2 [44,3; 54,2]		
	INT	34,4 [34;40,7]	0,02		<u>0,01</u>	47,2 [36,6; 58,3]	0,2	0.7
	PMA	33,1 [27,9;37,7]	0,8	0,02	<u>0,02</u>	46,7 [34,1;54,8]	0,4	0,7

Таблица 8. Продолжение

1	2	3	4	5	6	7	8	9
	PPP	1329 [1252;1381]		I	0,2	1350 [1325; 1501]		1
CS MM ²	INT	1321 [1221;1443]	0,8	0.1	0,2	1386 [1306; 1510]	0,4	0.02
	PMA	1279 [1168;1395]	0,2	0,1	0,2	1253 [1205; 1389]	<u>0,01</u>	0,02
	PPP	16769 [14795; 20623]			0,0002	27221 [23643; 30118]		
D усл.ед.	INT	17362 [16849; 19848]	0,3	<u>0,03</u>	<u>0,0001</u>	25125 [23351; 27902]	0,2	0,03
	PMA	16876 [15307; 17843]	0,5	0,03	<u>0,0001</u>	24045 [22361; 26442]	<u>0,0008</u>	0,03
	PPP	45,15 [43,5; 48,7]			<u>0,0001</u>	19,5 [17; 24,4]		
Тsp мин	INT	35,3 [33; 37,8]	0,05	0,5	<u>0,005</u>	21,7 [17; 29,8]	0,2	0.2
	PMA	33,6 [33,5; 36,2]	<u>0,05</u>	0,5	0,08	20,25 [15,1; 35,3]	0,07	0,2
	PPP	0,9 [0,90; 1,0]			0,6	0,9 [0,9; 1]		
Tlag мин	INT	0,9 [0,8; 1]	0,4	0,2	0,7	0,9 [0,9; 1]	0,4	0,05
	PMA	1 [0,9; 1]	0,3	0,2	0,8	1 [0,9; 1,2]	0,2	0,03

 ${f P}^{int}$ сравнение INT с PPP внутри групп; ${f P}^{pma}$ сравнение PMA с PPP внутри групп; ${f P}^{kz}$ сравнение между группами контроля и пациентов; ${f P}^{1}$ сравнение между INT и PMA внутри группы контроля; ${f P}^{2}$ сравнение между INT и PMA внутри группы пациентов. ${f P}$ значимые отличия ($p \le 0,05$).

В исходной плазме в группе контроля (К.РРР) ниже Vi, Vst, D, позже происходило появления спонтанных сгустков. Значения показателей фибринолиза, свидетельствуют о большей его интенсивности в группе пациентов (Z.РРР).

Таблица 9 Показатели фибринолиза по данным теста тромбодинамики Me[Q0,25-Q0,75]

	К. Группа контроля					Z. Группа г	іациент	ОВ
		Значение показателя	P ^{int} P ^{pma}	P ¹	P ^{KZ}	Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^2
1	2	3	4	5	6	7	8	9

Таблица 9. Продолжение

1	2	3	4	5	6	7	8	9
	PPP	33,9		1	0,003	23,9		
	111	[33,9; 47,6]			0,005	[18,8; 32,4]		
LOT	INT	30,2	0,3		0,02	24,8	0,4	
МИН	1111	[28,3; 40,7]	0,3	0,7	0,02	[16,7; 28,6]	0,4	0,5
	PMA	29	0,9	0,7	0,01	24,1	0,1	
	1 1/1/1	[28,1; 36,7]	0,5		<u>0,01</u>	[19; 25,5]	0,1	
TD	PPP	2 [1,7; 2,6]			<u>0,003</u>	8,5 [4,9; 14,9]		
LP %/мин	INT	2,7 [2,2; 2,9]	0,2	0,01	<u>0,0003</u>	8,8 [5,1; 12,4]	0,9	0,4
	PMA	3 [2,9; 3,8]	<u>0,01</u>		<u>0,001</u>	9,2 [4,7; 17,1]	0,7	0,4
	PPP	51 [40; 58]			<u>0,001</u>	18 [13,4; 25,9]		
LTE мин	INT	40,6 [36,8; 50,6]	0,1	0,02	<u>0,002</u>	16,9[12,6;22,4]	0,4	0,8
	PMA	35,2 [27,8; 37,1]	<u>0,04</u>	0,02	<u>0,001</u>	16 [12,4; 24,8]	0,4	0,0

 ${f P}^{int}$ сравнение INT с PPP внутри групп; ${f P}^{pma}$ сравнение PMA с PPP внутри групп; ${f P}^{kz}$ сравнение величины соответствующих показателей между группами контроля и пациентов; ${f P}^1$ сравнение между INT и PMA внутри группы контроля; ${f P}^2$ сравнение между INT и PMA внутри группы пациентов; ${f P}$ значимые отличия ($p \le 0,05$)

Плазма крови онкобольных и доноров значимо различалось по содержанию фибриногена, IX фактора (табл.12), плазминогена/плазмина (PLS), tPA, PAI-1 (табл. 11) и PS (табл. 13). Отличия в содержании XIII фактора свертывания (XIII), протромбина, D-димера (DD), тканевого фактора (TF), антитромбина- III (AT-III), MP-CD142+ и PSGL-1 не значимы (табл. 10).

Таблица 10 Содержание микровезикул, несущих тканевой фактор (MP-CD142+) в исследованных образцах плазмы Me[Q0,25-Q0,75]

	К. Группа контроля					Z. Группа пациентов			
		Значение показателя	P ^{int} P ^{pma}	P ¹	P ^{KZ}	Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^2	
MP-	PPP	125 [85; 182]			0,5	161 [56; 217]			
CD142+	INT	182 [160; 195]	0,2	<u>0,007</u>	0,3	247 [112; 316]	0,1	0,2	
ед/мкл	PMA	376 [234; 530]	0,008		0,6	271 [209; 499]	0,06	0,2	

 ${f P}^{int}$ сравнение INT с PPP внутри групп; ${f P}^{pma}$ сравнение PMA с PPP внутри; ${f P}^{kz}$ сравнение величины соответствующих показателей между группами контроля и; ${f P}^1$ сравнение между INT и PMA внутри группы контроля; ${f P}^2$ сравнение между INT и PMA внутри группы пациентов; P- значимые отличия ($p \le 0.05$)

Далее оценивали те же показатели в плазме, инкубированной с аНГ (К.РМА и Z.РМА). Внутри группы контроля плазма К.РМА значимо отличается от исходной (К.РРР) по показателям фибринолиза — увеличилась LP и уменьшилось LTE. Из характеристик коагуляции: спонтанные сгустки (Тsp) образовывались на 12 минут быстрее, чем в интактной плазме; уменьшилась Vi. Выявлены количественные изменения компонентов систем коагуляции и фибринолиза: увеличилось содержание PLS, Fib, PSGL-1, а также MP-CD142+ (та. 10), уменьшилось — PAI-1 (табл. 11, 12, 13).

Таблица 11 Концентрация компонентов системы фибринолиза в исследованных образцах плазмы Me[Q0,25-Q0,75]

	К. Группа контроля					Z. Группа пациентов			
		Значение показателя	P ^{int} P ^{pma}	P ¹	P ^{KZ}	Значение показателя	P ^{int} P ^{pma}	P ²	
1	2	3	4	5	6	7	8	9	
	PPP	444,6 [367,4; 577,9]			<u>0,0002</u>	809,27 [773,9; 832,08]			
PLS мкг/мл	INT	547,1 [475; 732,5]	0,02	0,008	<u>0,007</u>	805,1 [783,7; 825,6]	0,7	0,9	
	PMA	767,7 [662; 864,1]	<u>0,01</u>	0,000	0,7	820 [787,9; 845,04]	0,8	0,9	
	PPP	64,01 [62,3; 66,8]			<u>0,00004</u>	351,75 [311,5; 592,5]			
tPA пг/мл	INT	63,48 [61,6; 64,7]	0,9	0,4	<u>0,0001</u>	440,5 [227,5; 607,75]	0,5	0,5	
	PMA	61,3 [59,7; 65,7]	0,4	0,4	<u>0,0001</u>	389,75 [247; 672]	0,9	0,3	
	PPP	2290,75 [1013; 3355,8]			<u>0,0003</u>	6442 [4659,25; 9307,5]			
РАІ-1 пг/мл	INT	2101,5 [508; 2681,3]	<u>0,01</u>		<u>0,001</u>	6376,25 [5258,5; 9428,8]	0,6		
	PMA	1328,25 [1044,4; 2157,8]	0,008	0,008	<u>0,0002</u>	7956,75 [5332,5; 10645,6]		0,6	

1 2 3 4 5 6 7 8 9 41,37 45,48 **PPP** 0,1[39,5; 44,05] [42,4; 47,2] DD 42,78 44,77 INT 0,7 0,7 0,6 мкг/мл [42,2; 44,6] [40,5; 46,5] 0.8 0.1 43,56 45,39

0,02

Таблица 11. Продолжение

[44,5; 47,4]

0,3

 ${f P}^{int}$ сравнение INT с PPP внутри групп; ${f P}^{pma}$ сравнение PMA с PPP внутри; ${f P}^{kz}$ сравнение величины соответствующих показателей между группами контроля и; ${f P}^1$ сравнение между INT и PMA внутри группы контроля; ${f P}^2$ сравнение между INT и PMA внутри группы пациентов; ${f P}^-$ значимые отличия (${f p} \le 0.05$)

0,6

PMA

[41,4; 44,3]

В группе пациентов получены иные результаты при сравнении Z.PPP и Z.PMA. Зафиксировано уменьшение Vi, CS и D (табл.8). Показатели фибринолиза значимо не изменялись (табл.9). Увеличивалась концентрации PSGL-1, уровень P-селектина снижался (табл. 12).

Далее выполняли сравнение образцов исходной плазмы внутри каждой группы (К.РРР и Z.РРР) с образцами плазмы после инкубации в ней интактных НГ (К.INТ и Z.INТ), а также сравнивали соответствующие показатели между группами контроля и пациентов (К.РМА и Z.РМА).

В контроле (K.INT) наблюдалось увеличение Vst и ускорение появления спонтанных сгустков (Tsp), увеличение содержания PLS, PAI-1, Fib и PSGL-1относительно исходной плазмы (К.РРР) (табл. 9, 11-13). Образцы К.INT и К.РМА различаются: Vst, D, содержание фибриногена выше в образцах К.INT относительно как исходной плазмы, так и К.РМА; LP, LTE и количество MP-CD142+ максимальны в образцах К.РМА.

В группе контроля и интактные и индуцированные НГ способны влиять на клоттинговые свойства плазмы, однако это влияние не одинаково. В тесте тромбодинамики отличия между образцами К.INТ и К.PMA зафиксированы по показателям Vst, D, LP, LTE (табл. 8). Указанные образы также различаются по содержанию MP-CD142+, плазминогена и PAI-1 (табл. 10, 11).

Таблица 12

Концентрация некоторых компонентов свертывающей и антикоагулянтной систем крови Me[Q0,25-Q0,75]

		К. Группа контр	оля			Z. Группа пациентов		
		Значение показателя	P ^{int} P ^{pma}	P ¹	P ^{KZ}	Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^2
	PPP	1949,3 [1761,5; 2453,3]			<u>0,01</u>	4244,3 [245,8; 6001,6]		
Fib мкг/мл	INT	2882,7 [1877,3; 3142,6]	<u>0,02</u>	0,9	<u>0,04</u>	3203,4 [2749,6; 6229,9]	0,4	0,6
	PMA	2355,8 [1745; 3206,6]	<u>0,05</u>	0,7	0,08	3384,7 [2723,7; 8997]	0,8	0,0
	PPP	6442,75 [5512,5; 8634,6]			<u>0,00004</u>	14245,5 [12379; 19038,5]		
IX пг/мл	INT	6820 [6726,8; 8156,5]	0,4	0,7	0,02	13857 [10439,3;16114,5]	0,3	0,8
	PMA	6517,8 [5702,2; 7290,6]	0,4	0,7	<u>0,004</u>	10840 [8315; 20322,8]	0,3	0,0
*****	PPP	3,62 [3,2; 4]			0,5	3,68 [3,53; 4,04]		
ХIII мкг/мл	INT	3,74 [3,4; 4,2]	0,3	0.4	0,4	3,57 [3,48; 3,92]	0,2	0.4
1411(1714151	PMA	3,8 [3,3; 4,3]	0,7	0,4	0,7	3,72 [3,23; 4,02]	0,2	0,4
PT	PPP	23,3 [20,4; 41,7]			0,6	27,4 [22,5; 35,9]		
мкг/мл	INT	18,4 [14,7; 45,3]	0,9	0,1	0,1	32,2 [24,4; 45,3]	0,5	0,3
	PMA	32,4 [17,8; 49,7]	0,5	0,1	0,6	29,2 [23,3; 46]	0,5	0,5
	PPP	4,45 [4,29; 4,49]			0,6	4,48 [4,23; 4,7]		
ТФ пг/мл	INT	4,39 [4,26; 4,51]	0,8		0,3	4,54 [4,32; 4,67]	0,5	
111 / WIJI	PMA	4,44 [4,32; 4,55]	0,8	0,9	0,06	4,59 [4,43; 4,77]	0,2	0,2
	PPP	998,8 [799,4; 1791,3]		•	0,6	1272 [996,2; 1753]		
АТ-ІІІ мкг/мл	INT	956 [732,2; 2519,7]	0,9	0.7	0,7	1356,6 [978,2; 1600]	0,9	0.7
	PMA	744,9 [739,5; 2226,7]	0,8	0,7	0,8	1170,8 [967,7; 1894,4]	0,8	

 ${f P}^{int}$ сравнение INT с PPP внутри групп; ${f P}^{pma}$ сравнение PMA с PPP внутри; ${f P}^{kz}$ сравнение величины соответствующих показателей между группами контроля и; ${f P}^1$ сравнение между INT и PMA внутри группы контроля; ${f P}^2$ сравнение между INT и PMA внутри группы пациентов; ${f P}^2$ - значимые отличия (${f p}{\le}0,05$)

Изменения, намеченные в K.INT — незначительное начальное замедление роста сгустка, уменьшение его размера и интенсификацию фибринолиза, максимально выражены в образцах K.PMA.

Иная картина наблюдается в группе пациентов. Образцы Z.INT значимо отличаются от исходной плазмы только за счет уменьшения показателя Vi, увеличения PSGL-1 и ИЛ-8. При сравнении Z.INT и Z.PMA значимо уменьшаются размер и плотность сгустка, при увеличении Tlag в плазме с активированными НГ.

Таблица 13 Концентрация цитокинов и растворимых рецепторов Me[Q0,25-Q0,75]

	К. Группа контроля					Z. Группа пациентов		
		Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^1	P ^{KZ}	Значение показателя	P ^{int} P ^{pma}	\mathbf{P}^2
	PPP	59,96 [59,2; 64,18]		,	0,04	65,73 [64,5; 68,9]		
ИЛ-6 пг/мл	INT	65,62 [63,3; 67,81]	0,09	<u>0,05</u>	0,7	66,79 [63,2; 67,5]	0,6	0,4
	PMA	61,33 [59,92; 62,81]	0,7		<u>0,004</u>	67,78 [65,6; 286]	0,5	
	PPP	60,24 [57,9; 140,5]			<u>0,03</u>	571,75 [249,5; 1243]		
ИЛ-8 пг/мл	INT	2422 [880,8; 4852,5]	0,008	0.007	<u>0,7</u>	3150,75 [2007; 5470,8]	<u>0,004</u>	0.6
	PMA	7836,25 [5422,5; 10786,5]	0,008	0,007	0,07	1677 [1006,8; 7777]	0,02	0,6
n	PPP	43,09 [41; 44,3]			0,04	46,03 [42,84; 47,49]		
Р- селектин пг/мл	INT	41,88 [40,1; 44,9]	0,5	0,7	0,05	44,77 [41,97; 46,42]	0,08	0,6
111 / 19131	PMA	43,12 [39,06; 43,81]	0,8	0,7	0,4	45,39 [40,88; 46,83]	<u>0,01</u>	0,0
	PPP	457,75 [227,5; 584,8]			0,4	531,48 [349,5; 672,8]		
PSGL-1 пг/мл	INT	865 [620,5; 1018,75]	0,02	0,01	0,3	781,25 [431,8; 926,5]	<u>0,04</u>	0,2
	PMA	1236,75 [1071,25; 1340,5]	0,008		0,05	791,5 [538,8;1254,3]	<u>0,002</u>	

 ${f P}^{int}$ сравнение INT с PPP внутри групп; ${f P}^{pma}$ сравнение PMA с PPP внутри групп; ${f P}^{kz}$ сравнение величины соответствующих показателей между группами контроля и пациентов; ${f P}^1$ сравнение между INT и PMA внутри группы контроля; ${f P}^2$ сравнение между INT и PMA внутри группы пациентов; ${f P}$ значимые отличия (${\it p}{\leq}0,05$)

Таким образом, на этапе коагуляции и формирования тромба, НГ и НВЛ способствуют привлечению и/или активации гуморальных и корпускулярных участников (ФСК, лейкоциты, тромбоциты, микровезикулы) за счет тромбогенных свойств вкДНК и гистонов, межклеточных взаимодействий и продукции ИЛ-8. После окончания фибринообразования, tPA и протеазы, выделенные в составе НВЛ и включенные в тромб вместе с погибшими НГ, а также лейкоциты, покрывающие тромб со стороны просвета сосуда, осуществляют лизис сгустка путем активации плазменной системы фибринолиза и путем неспецифического протеолиза фибрина. На основании этой логики мы полагаем, что НВЛ осуществляют вспомогательную функцию на этапе коагуляции, а также иммунное подкрепление тромбообразования, дальнейшая их роль в гемостатических реакциях заключается в элиминации тромбов, потенциально заключающих в себе патоген.

Меньший активационный потенциал НГ онкобольных и высокая концентрация цитокинов, ФСК и ингибиторов фибринолиза в исходной плазме (Z.PPP) свидетельствует о хроническом течении процесса и истощении внутриклеточных резервов ферментов и ИЛ-8, что ведет к смещению баланса в сторону компонентов с прокоагулянтными свойствами, отсутствию эффекта усиления растворения фибрина при гибели НГ нетозом и, таким образом, вносит свой вклад в формирование состояния гиперкоагуляции при хронических воспалительных процессах.

выводы

- 1. Степень генерации нейтрофильных внеклеточных ловушек, индуцированная форбол-12-миристат-13-ацетатом, у больных раком толстого кишечника на 70% ниже в сравнении с лицами, не имеющими злокачественного процесса.
- 2. У пациентов с раком толстого кишечника и доноров, не имеющих злокачественного процесса, нейтрофильные внеклеточные ловушки, вызванные форбол-12-миристат-13-ацетатом, уменьшают начальную скорость коагуляции плазмы на 5,5%.
- 3. Формирование нейтрофильных внеклеточных ловушек сопровождается усилением активаторного и неспецифического протеолитического механизмов фибринолиза. Нейтрофилы пациентов с раком толстого кишечника, индуцированные к нетозу форбол-12-миристат-13-ацетатом, оказывают меньшее, чем у лиц, не имеющих злокачественного процесса, влияние на скорость tPA-зависимого фибринолиза, что выражается в сокращении на 10% и 30% соответственно, времени полного растворения фибринового сгустка.

- 4. Формирование нейтрофильных внеклеточных ловушек под действием форбол-12-миристат-13-ацетата у доноров сопровождается увеличением концентрации плазминогена/плазмина и снижением концентрации PAI-1 в плазме крови. У больных раком толстого кишечника нетоз не влияет на плазменный уровень плазминогена/плазмина и PAI-1.
- 5. Нетоз, вызванный форбол-12-миристат-13-ацетатом, у доноров и лиц со злокачественными новообразованиями толстого кишечника не изменяет плазменную концентрацию I, II, III, IX и XIII факторов свертывания крови и антитромбина- III.
- 6. Образование нейтрофильных внеклеточных ловушек у лиц, не имеющих злокачественного процесса, ведет к увеличению в плазме крови концентрации ИЛ-8 и PSGL-1, снижению ИЛ-6. У пациентов с раком толстого кишечника гибель нейтрофильных гранулоцитов путем нетоза не сопровождается изменением уровня указанных молекул.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ Опубликованные в научных рецензируемых журналах, рекомендованных ВАК:

- Паршина А.А. Нейтрофильные внеклеточные ловушки / А.А. Паршина, Н.Н. Цыбиков. DOI 10.7868/S004213241805006X // Успехи современной биологии. 2018. Т. 138. № 5. С. 488–502.
- Паршина А.А. / Влияние нейтрофильных внеклеточных ловушек на коагуляционный гемостаз и фибринолиз у пациентов со злокачественными новообразованиями толстого кишечника / А.А. Паршина, Н.Н. Цыбиков // Забайкальский медицинский вестник. 2019. № 4. С. 90–96. URL: http://zabmedvestnik.ru/index.php?option=com_library&Itemid=28 (дата обращения: 10.03.2021).
- 3. Паршина А.А. / Изменение концентрации IL-8 в экспериментальной модели литического нетоза / А.А. Паршина, Н.Н. Цыбиков, Т.М. Караваева // Забайкальский медицинский вестник. 2021. № 1. С. 1–4. URL: http://zabmedvestnik.ru/index.php?option=com_library&Itemid=28 (дата обращения: 10.03.2021).

Опубликованные в других изданиях:

- 4. Паршина А.А. Нейтрофильные внеклеточные ловушки как один из механизмов регуляции локального коагулологического потенциала / А.А. Паршина, Н.Н. Цыбиков // Актуальные проблемы клинической и экспериментальной медицины: материалы Международной научно-практической конференции, посвященной 65-летию образования Читинской государственной медицинской академии. Под редакцией Н.В. Ларёвой. Чита: РИЦ ЧГМА, 2018. С. 190-191.
- 5. Parshina A.A. Neutrophil extracellular traps in clotting and fibrinolysis / A.A. Parshina // Медицина завтрашнего дня : материалы XVIII межрегиональной научно-практической конференции студентов и молодых ученых, 23-26 апреля 2019 г. Чита : РИЦ ЧГМА, 2019. С. 389-390.
- 6. Parshina A.A. Neutrophil extracellular traps and amount of tissue factor-carrying microparticles in cancer patients in vitro / A.A. Parshina, N.N. Cybikov // Материалы XIX межрегиональной научно-практической конференции студентов и молодых ученых, 19-22 мая 2020 г. Чита: РИЦ ЧГМА, 2020. С. 388-389.
- 7. Паршина А.А. Влияние нетоз-ассоциированной нейтрофильной эластазы на процессы формирования и лизиса фибринового сгустка in vitro / A.A. Паршина, Н.Н. Цыбиков // Типовые патологические процессы: современные тренды в науке : посвященный 130-летию кафедры патофизиологии Сборник трудов, Императорского (государственного) Томского университета Томского Сибирского государственного медицинского института _ медицинского университета / под ред. члена-корреспондента РАН О.И. Уразовой. – Томск : Изд-во «Печатная мануфактура», 2020. – С. 99-100.

Список сокращений

аНГ Активированные нейтрофильные гранулоциты

БТаП Бедная тромбоцитами аутоплазма

вкДНК Внеклеточная ДНК

ДНК Дезоксирибонуклеиновая кислота

иНГ Интактные нейтрофильные гранулоциты

ИФА Иммуноферментный анализ

НВЛ Нейтрофильные внеклеточные ловушки

НГ Нейтрофильные гранулоциты

нФП Непрогретые фибриновые пластины

НЭ Нейтрофильная эластаза

пФП Прогретые фибриновые пластины

ТФ Тканевой фактор

ФБР Фосфатный буферный раствор

ФМА Форбол-12-миристат-13-ацетат

ФСК Факторы свертывая крови

DD D-dimer, Д-димер

Fib Fibrinogen, Фибриноген

PLS Plasminogen, Плазминоген

PS P-selectin, P-селектин

PT Prothrombin, Протромбин

XIII Фактор свертывания крови